Fuzzy Neural Intelligent Systems
Mathematical Foundation and the Applications in Engineering
Preface

Fuzzy systems and neural networks have been regarded as the main branches of soft computing. Most research works have been focused on the development of theories and design of systems and algorithms for specific applications. These works have shown that neuro-fuzzy systems indeed demonstrate their exceptional intelligent capability for computing and learning. However, we may be aware that there is little theoretical support for existing neuro-fuzzy systems, especially their mathematical foundation. From the literature, a neuro-fuzzy system is defined as a combination of fuzzy systems and neural networks such that the parameters of fuzzy systems are determined by neural network learning algorithms. The intention is to take the advantage of neural network methods to improve or to create a fuzzy system. On the other hand, a fuzzy neural network is defined as the use of fuzzy methods to enhance or to improve the learning capabilities of a neural network. Unfortunately, little work has been done in the fuzzy neural network area. The main features of this book give a layout of mathematical foundation for fuzzy neural networks and a better way of combining neural networks with fuzzy logic systems.

This book was written to provide engineers, scientists, researchers, and students interested in fuzzy systems, neural networks, and fuzzy neural integrated systems a systematic and comprehensive structure of concepts and applications. The required mathematics for reading this book are not beyond linear algebra and engineering mathematics.

This book contains 19 chapters and consists of three major parts. Part I (Chapters 1-5, 10, 11) covers the fundamental concepts and theories for fuzzy systems and neural networks. Part II (Chapters 6-8, 12, 13) provides the foundation and important topics in fuzzy neural networks. Part III (Chapters 14-19) gives extensive case examples for neuro-fuzzy systems, fuzzy systems, neural network systems, and fuzzy neural systems. In short, Chapter 1 briefly introduces fundamental knowledge of fuzzy systems. These include fuzzy sets, fuzzy relations, resolution theorem, representation theorem, extension principle, fuzzy clustering, fuzzy logic, fuzzy inference, fuzzy logic systems, etc. Chapter 2 discusses determination of membership functions for a fuzzy logic system. Chapter 3 reveals mathematical essence and structures of neural networks. Chapter 4 studies structures of functional-link neural networks and fuzzy functional-link neural networks. Chapter 5 describes flat neural networks, computational algorithms, and their
applications. Chapter 6 describes the structure of fuzzy neural networks in detail, from the multifactorial functions point of view. Chapter 7 discloses mathematical essence and structures of feedback neural networks and fuzzy neural networks, where it is indicated that stable points of a feedback can be, in essence, regarded as fixed points of a function. Extending the idea from Chapters 6 and 7, Chapter 8 introduces generalized additive weighted multifactorial functions and the applications to fuzzy inference and neural networks. Chapter 9 discusses interpolation mechanisms of fuzzy control including some innovative methods and important results. Chapter 10 shows the relations between fuzzy logic controllers and PID controllers mathematically. Chapter 11 discusses adaptive fuzzy control by using variable universe. Chapters 12 and 13 introduce factor spaces theory and study of neuron models and neural networks formed by factor spaces. Chapter 14 gives the foundation of neuro-fuzzy systems. Chapter 15 explores the nature of data and discusses the importance of data preprocessing. Chapters 16 to 18 give engineering applications of both fuzzy neural and neuro-fuzzy systems. Chapter 18 shows the application of hybrid neural network and fuzzy systems. Chapter 19 gives the on-line learning and DSP implementation of fuzzy neural systems, followed by myoelectric applications.

The materials of this book can be used as different graduate courses (15-week semester courses):

- **Introduction to Fuzzy and Neural Systems**: Chapters 1-8, 12, 13.
- **Introduction to Intelligent Control**: Chapters 1-5 10,15.
- **Advanced Intelligent Control**: Chapters 9, 11, 14-19.

Of course, this book can also be used as a self-study textbook and reference book.
Acknowledgments

We are indebted to many people who directly or indirectly assisted in the preparation of the text. In particular, we would like to thank Professors L. A. Zadeh, C. S. George Lee, Yoh-Han Pao, S. S. Lu, and N. H. McClamroch. Special thanks goes to Dr. Pei-Ling H. Lee for her continuous encouragement during the last few years. The graduate students who worked on the project over the past few years also contributed to the text. They are: C. C. Liang, Y. C. Lee, C. Y. Juang, W. M. Lee, K. P. Wong, C. H. Lin, C. Y. Chiang, J. Y. Wang, Q. He, Z. H. Miao, and Q. F. Cai.

We would also like to extend our appreciation to Beijing Normal University, Wright State University, National Taiwan University, National Natural Science Foundation of China, Dr. Steven R. LeClair at Wright-Patterson Air Force Base, and National Science Council of Taiwan, for their sponsorship of our research activities in fuzzy neural systems, manufacturing automation and robotics, and related areas. We also thank Cindy Carelli, Steve Menke, and Helena Redshaw at CRC Press for their skillful coordination of the production of the book.

Finally, we would like to thank our wives and children, HX: Qian Xuan and child Ke-Yu; CLP: Cindy, and children, Oriana, Melinda, and Nelson; HP: Li-Chu, and children, Jong-Pyng, Quann-Ru, for their understanding and constant encouragement, without which this book would not have been possible.

H. X. Li
Beijing
C. L. Philip Chen
Dayton
H. P. Huang
Taipei
3. Mathematical Essence and Structures of Feedforward Artificial Neural Networks
 3.1 Introduction
 3.2 Mathematical Neurons and Mathematical Neural Networks
 3.2.1 MP Model with Discrete Outputs
 3.2.2 MP Model with Continuous-valued Outputs
 3.3 The Interpolation Mechanism of Feedforward Neural Networks
 3.4 A Three-layer Feedforward Neural Network with Two Inputs One Output
 3.5 Analysis of Steepest Descent Learning Algorithms of Feedforward Neural Networks
 3.6 Feedforward Neural Networks with Multi-input One Output and Their Learning Algorithm
 3.7 Feedforward Neural Networks with One Input Multi-output and Their Learning Algorithm
 3.8 Feedforward Neural Networks with Multi-input Multi-output and Their Learning Algorithm
 3.9 A Note on the Learning Algorithm of Feedforward Neural Networks
 3.10 Conclusions
 References

4. Functional-link Neural Networks and Visualization Means of Some Mathematical Methods
 4.1 Discussion of the XOR Problem
 4.2 Mathematical Essence of Functional-link Neural Networks
 4.3 As Visualization Means of Some Mathematical Methods
 4.4 Neural Network Representation of Linear Programming
 4.5 Neural Network Representation of Fuzzy Linear Programming
 4.6 Conclusions
 References

5. Flat Neural Networks and Rapid Learning Algorithms
 5.1 Introduction
 5.2 The Linear System Equation of the Functiona-Link Network
 5.3 Pseudoinverse and Stepwise Updating
 5.4 Training with Weighted Least Square
 5.5 Refine the Model
 5.6 Time-series Applications

© 2001 by CRC Press LLC
5.7 Examples and Discussion
5.8 Conclusions
References

6. Basic Structure of Fuzzy Neural Networks
6.1 Definition of Fuzzy Neurons
6.2 Fuzzy Neural Networks
 6.2.1 Neural Network Representation of Fuzzy Relation Equations
 6.2.2 A Fuzzy Neural Network Based on \(FN (\land, \lor) \)
6.3 A Fuzzy \(\delta \) Learning Algorithm
6.4 The Convergence of Fuzzy \(\delta \) Learning Rule
6.5 Conclusions
References

7. Mathematical Essence and Structures of Feedback Neural Networks and Weight Matrix Design
7.1 Introduction
7.2 A General Criterion on the Stability of Networks
7.3 Generalized Energy Function
7.4 Learning Algorithm of Discrete Feedback Neural Networks
7.5 Design Method of Weight Matrices Based on Multifactorial Functions
7.6 Conclusions
References

8. Generalized Additive Weighted Multifactorial Function and its Applications to Fuzzy Inference and Neural Networks
8.1 Introduction
8.2 On Multifactorial Functions
8.3 Generalized Additive Weighted Multifactorial Functions
8.4 Infinite Dimensional Multifactorial Functions
8.5 \(M (\top, \bot) \) and Fuzzy Integral
8.6 Application in Fuzzy Inference
8.7 Conclusions
References

9. The Interpolation Mechanism of Fuzzy Control
9.1 Preliminary
9.2 The Interpolation Mechanism of Mamdani Algorithm with One Input and One Output
9.3 The Interpolation Mechanism of Mamdanian Algorithm with Two Inputs and One Output

9.4 A Note on Completeness of Inference Rules

9.5 The Interpolation Mechanism of \((+,\cdot)\) Centroid Algorithm

9.6 The Interpolation Mechanism of Simple Inference Algorithm

9.7 The Interpolation Mechanism of Function Inference Algorithm

9.8 A General Fuzzy Control Algorithm

9.9 Conclusions

References

10. The Relationship between Fuzzy Controllers and PID Controllers

10.1 Introduction

10.2 The Relationship of Fuzzy Controllers with One Input One Output and P Controllers

10.3 The Relationship of Fuzzy Controllers with Two Inputs One Output and PD (or PI) Controllers

10.4 The Relationship of Fuzzy Controllers with Three Inputs One Output and PID Controllers

10.5 The Difference Schemes of Fuzzy Controllers with Three Inputs and One Output

10.5.1 Positional Difference Scheme

10.5.2 Incremental Difference Scheme

10.6 Conclusions

References

11. Adaptive Fuzzy Controllers Based on Variable Universes

11.1 The Monotonicity of Control Rules and the Monotonicity of Control Functions

11.2 The Contraction-expansion Factors of Variable Universes

11.2.1 The Contraction-expansion Factors of Adaptive Fuzzy Controllers with One Input and One Output

11.2.2 The Contraction-expansion Factors of Adaptive Fuzzy Controllers with Two Inputs and One Output

11.3 The Structure of Adaptive Fuzzy Controllers Based on Variable Universes

11.4 Adaptive Fuzzy Controllers with One Input and One Output

11.4.1 Adaptive Fuzzy Controllers with Potential Heredity

11.4.2 Adaptive Fuzzy Controllers with Obvious Heredity
13.3 The Models of Neurons Concerned with Time
13.4 The Models of Neurons Based on Variable Weights
 13.4.1 The Excitatory and Inhibitory Mechanism of Neurons
 13.4.2 The Negative Weights Description of the Inhibitory Mechanism
 13.4.3 On Fukushima Model
 13.4.4 The Model of Neurons Based on Univariable Weights
13.5 Naïve Thoughts of Factor Space Canes
13.6 Melon-type Factor Space Canes
13.7 Chain-type Factor Space Canes
13.8 Switch Factors and Growth Relation
13.9 Class Partition and Class Concepts
13.10 Conclusions
References
14. Foundation of Neuro-Fuzzy Systems and an Engineering Application
 14.1 Introduction
 14.2 Takagi, Sugeno, and Kang Fuzzy Model
 14.3 Adaptive Network-based Fuzzy Inference System (ANFIS)
 14.4 Hybrid Learning Algorithm for ANFIS
 14.5 Estimation of Lot Processing Time in an IC Fabrication
 14.5.1 Algorithm 1: Gauss-Newton-based Levenberg-Marquardt Method
 14.5.2 Algorithm 2: Backpropagation Neural Network
 14.5.3 Algorithm 3: ANFIS Algorithm
 14.5.4 Simulation Result
 14.5.4.1 Gauss-Newton-based LM Model Construction
 14.5.4.2 BP Neural Network Model Construction
 14.5.4.3 ANFIS Model Construction
 14.6 Conclusions
References
15. Data Preprocessing
 15.1 Introduction
 15.2 Data Preprocessing Algorithms
 15.2.1 Data Values Averaging
 15.2.2 Input Space Reduction
 15.2.3 Data Normalization (Data Scaling)
 15.3 Conclusions
15.4 Appendix: Matlab Programs
 15.4.1 Example of Noise Reduction Averaging
 15.4.2 Example of Min-Max Normalization
 15.4.3 Example of Zscore Normalization
 15.4.4 Example of Sigmoidal Normalization
 15.4.5 The Definitions of Mean and Standard Deviation

References

16. Control of a Flexible Robot Arm using a Simplified Fuzzy Controller
 16.1 Introduction
 16.2 Modeling of the Flexible Arm
 16.3 Simplified Fuzzy Controller
 16.3.1 Derivation of Simplified Fuzzy Control Law
 16.3.2 Analysis of Simplified Fuzzy Control Law
 16.3.3 Neglected Effect in Simplified Fuzzy Control
 16.4 Self-Organizing Fuzzy Control
 16.4.1 Reference Model
 16.4.2 Incremental Model
 16.4.3 Parameter Decision
 16.5 Simulation Results
 16.6 Conclusions

References

 Decision Tree and Application to Tactile Recognition
 17.1 Introduction
 17.2 Tactile Sensors and a Tactile Sensing and Recognition System
 17.2.1 Types of FSRs
 17.2.2 A Tactile Sensing System
 17.2.2.1 Hardware Devices
 17.2.2.2 Software Kernel
 17.2.2.3 Man-machine Interface
 17.2.3 Interpolation to Increase Resolution
 17.2.3.1 Linear Interpolation
 17.2.3.2 Polynomial Interpolation
 17.2.3.3 Fractal Interpolation
 17.2.3.4 Fuzzy Interpolation
17.3 Development of a Fuzzy Learning Decision Tree
 17.3.1 Architecture of the Fuzzy Learning Decision Tree
 17.3.2 Features Selection
 17.3.3 Fuzzy Sets for Compressing Training Data
 17.3.4 Determining Several Points on a Fuzzy Set
 17.3.5 Identifying a LR Type Fuzzy Set
 17.3.6 Learning Procedure of a Decision Tree
 17.3.7 Comparing to Rule Based Systems
 17.3.8 Comparison with Artificial Neural Networks

17.4 Experiments
 17.4.1 Experiment Procedures
 17.4.2 Experiment Results and Discussions

17.5 Conclusions

References

18. Fuzzy Assessment Systems of Rehabilitive Process for CVA Patients
 18.1 Introduction
 18.2 COP Signals Feature Extraction
 18.2.1 Space Domain Analysis
 18.2.2 Time Domain Analysis
 18.2.3 Frequency Domain Analysis
 18.2.4 Force Domain Analysis
 18.3 Relationship between COP Signals and FIM Scores
 18.4 Construction of Kinetic State Assessment System
 18.4.1 Balance Indices Input
 18.4.2 Knowledge Base
 18.4.3 Fuzzy Inference Engine
 18.4.4 Defuzzification
 18.4.5 Parameters and Rules Setup
 18.5 Results of Genetic State Assessment System
 18.6 Conclusions

References

19. A DSP-based Neural Controller for a Multi-degree Prosthetic Hand
 19.1 Introduction
 19.2 EMG Discriminative System
 19.2.1 EMG Signal Processing

© 2001 by CRC Press LLC
19.2.2 Pattern Recognition
 19.2.2.1 Feature Extraction
 19.2.2.2 Feature Selection
 19.2.2.3 Classification by Neural Network
19.3 DSP-based Prosthetic Controller
 19.3.1 Hardware Architecture of the Controller
 19.3.1.1 The Off-line Stage of the Prosthetic Controller
 19.3.1.2 The On-line Stage of the Prosthetic Controller
 19.3.2 The Software System of the Controller
 19.3.2.1 Signal Collection
 19.3.2.2 Signal Processing
 19.3.2.3 Feature Extraction
 19.3.2.4 BPNN Classification
19.4 Implementation and Results of the DSP-based Controller
 19.4.1 Off-line Stage Implementation
 19.4.2 On-line Stage Implementation
 19.4.3 On-line Analysis Results
19.5 Conclusions
References